
pFUnit 3.0 Tutorial
Basic

Tom Clune

Advanced Software Technology Group
Computational and Information Sciences and Technology Office

NASA Goddard Space Flight Center

April 10, 2014

Tom Clune (ASTG) pFUnit - Session I April 10, 2014 1 / 124

Outline

1 Introduction
Overview
Quick review of testing

2 Introduction to pFUnit

3 References and Acknowledgements

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 2 / 124

Outline

1 Introduction
Overview
Quick review of testing

2 Introduction to pFUnit

3 References and Acknowledgements

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 3 / 124

Class Overview

Primary Goals:

Learn how to use pFUnit 3.0 to create and run unit-tests

Learn how to apply test-driven development methodology

Prerequisites:

Access to Fortran compiler supported by pFUnit 3.0

Familiarity with F95 syntax

Familiarity with MPI1

Beneficial skills:

Exposure to F2003 syntax - esp. OO features

Exposure to OO programming in general

1MPI-specific sections can be skipped without impact to other topics.
Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 4 / 124

Syllabus

Thursday PM - Introduction to pFUnit
I Overview of pFUnit and unit testing
I Build and install pFUnit
I Simple use cases and exercises
I Detailed look at framework API

Friday AM - Advanced topics (including TDD)
I User-defined test subclasses
I Parameterized tests
I Introduction to TDD
I Advanced exercises using TDD

Friday PM - Bring-your-own-code
I Incorporate pFUnit within the build process of your projects
I Apply pFUnit/TDD in your own code
I Supplementray exercises will be available

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 5 / 124

Materials

1 You will need access to one of the following Fortran compilers to do
the hands-on portions

I gfortran 4.9.0 (possibly available from cloud)
I Intel 13.1, 14.0.2 (available on jellystone)
I NAG 5.3.2

2 Last resort - use AWS
I ssh keys are at ftp://tartaja.com
I user name: pfunit@tartaja.com passwd: iuse.PYTHON.1969
I login: ssh-iuser1user1@54.209.194.237

3 You will need a copy of the exercises in your work environment
I Browser: https://modelingguru.nasa.gov/docs/DOC-2529
I Jellystone:

/picnic/u/home/cacruz/pFUnit.tutorial/Exercises.tar

4 These slides can be downloaded at
https://modelingguru.nasa.gov/docs/DOC-2528

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 6 / 124

ftp://tartaja.com
pfunit@tartaja.com
iuse.PYTHON.1969
ssh -i user1 user1@54.209.194.237
https://modelingguru.nasa.gov/docs/DOC-2529
/picnic/u/home/cacruz/pFUnit.tutorial/Exercises.tar
https://modelingguru.nasa.gov/docs/DOC-2528

Outline

1 Introduction
Overview
Quick review of testing

2 Introduction to pFUnit

3 References and Acknowledgements

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 7 / 124

Quick review of testing

What is a (software) test?

What is a unit test?

What are desirable properties for unit tests?

What is the anatomy of a unit test?

What is a test “fixture”

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 8 / 124

A test by any other name ...

A test is any mechanism that can be used to verify a software
implementation. Examples include:

Conditional termination during execution:

IF (PA(I,J)+PTOP.GT .1200.) &

call stop_model(’ADVECM: Pressure diagnostic error ’,11)

Diagnostic print statement

print*, ’loss of mass = ’, deltaMass

Inspection of rendered output:
Temp1

5 10 15

10

20

30

40

50

60

Temp2

5 10 15

10

20

30

40

50

60

Difference

5 10 15

10

20

30

40

50

60

Student Version of MATLAB

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 10 / 124

What is a unit test?

“A unit test is an automated piece of code that invokes a unit of
work in the system and then checks a single assumption about the
behavior of that unit of work.”

— The Art of Unit Testing

For our purposes a unit is a single Fortran subroutine or function.

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 12 / 124

What is a unit test?

“A unit test is an automated piece of code that invokes a unit of
work in the system and then checks a single assumption about the
behavior of that unit of work.”

— The Art of Unit Testing

For our purposes a unit is a single Fortran subroutine or function.

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 12 / 124

What is a unit test?

“A unit test is an automated piece of code that invokes a unit of
work in the system and then checks a single assumption about the
behavior of that unit of work.”

— The Art of Unit Testing

For our purposes a unit is a single Fortran subroutine or function.

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 12 / 124

Desirable attributes for tests:

Narrow/specific

I Failure of a test localizes defect to small section of code.

Orthogonal to other tests

I Each defect causes failure in one or only a few tests.

Complete

I All functionality is covered by at least one test.
I Any defect is detectable.

Independent - No side effects

I No STDOUT; temp files deleted; ...
I Order of tests has no consequence.
I Failing test does not terminate execution.

Frugal

I Execute quickly (think 1 millisecond)
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 13 / 124

Desirable attributes for tests:
Narrow/specific

I Failure of a test localizes defect to small section of code.

Orthogonal to other tests

I Each defect causes failure in one or only a few tests.

Complete

I All functionality is covered by at least one test.
I Any defect is detectable.

Independent - No side effects

I No STDOUT; temp files deleted; ...
I Order of tests has no consequence.
I Failing test does not terminate execution.

Frugal

I Execute quickly (think 1 millisecond)
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 13 / 124

Desirable attributes for tests:
Narrow/specific

I Failure of a test localizes defect to small section of code.
Orthogonal to other tests

I Each defect causes failure in one or only a few tests.

Complete

I All functionality is covered by at least one test.
I Any defect is detectable.

Independent - No side effects

I No STDOUT; temp files deleted; ...
I Order of tests has no consequence.
I Failing test does not terminate execution.

Frugal

I Execute quickly (think 1 millisecond)
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 13 / 124

Desirable attributes for tests:
Narrow/specific

I Failure of a test localizes defect to small section of code.
Orthogonal to other tests

I Each defect causes failure in one or only a few tests.
Complete

I All functionality is covered by at least one test.
I Any defect is detectable.

Independent - No side effects

I No STDOUT; temp files deleted; ...
I Order of tests has no consequence.
I Failing test does not terminate execution.

Frugal

I Execute quickly (think 1 millisecond)
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 13 / 124

Desirable attributes for tests:
Narrow/specific

I Failure of a test localizes defect to small section of code.
Orthogonal to other tests

I Each defect causes failure in one or only a few tests.
Complete

I All functionality is covered by at least one test.
I Any defect is detectable.

Independent - No side effects
I No STDOUT; temp files deleted; ...
I Order of tests has no consequence.
I Failing test does not terminate execution.

Frugal

I Execute quickly (think 1 millisecond)
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 13 / 124

Desirable attributes for tests:
Narrow/specific

I Failure of a test localizes defect to small section of code.
Orthogonal to other tests

I Each defect causes failure in one or only a few tests.
Complete

I All functionality is covered by at least one test.
I Any defect is detectable.

Independent - No side effects
I No STDOUT; temp files deleted; ...
I Order of tests has no consequence.
I Failing test does not terminate execution.

Frugal
I Execute quickly (think 1 millisecond)
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 13 / 124

Desirable attributes for tests:
Narrow/specific

I Failure of a test localizes defect to small section of code.
Orthogonal to other tests

I Each defect causes failure in one or only a few tests.
Complete

I All functionality is covered by at least one test.
I Any defect is detectable.

Independent - No side effects
I No STDOUT; temp files deleted; ...
I Order of tests has no consequence.
I Failing test does not terminate execution.

Frugal
I Execute quickly (think 1 millisecond)
I Small memory, etc.

Automated and repeatable

Clear intent

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 13 / 124

Desirable attributes for tests:
Narrow/specific

I Failure of a test localizes defect to small section of code.
Orthogonal to other tests

I Each defect causes failure in one or only a few tests.
Complete

I All functionality is covered by at least one test.
I Any defect is detectable.

Independent - No side effects
I No STDOUT; temp files deleted; ...
I Order of tests has no consequence.
I Failing test does not terminate execution.

Frugal
I Execute quickly (think 1 millisecond)
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 13 / 124

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual(9., s)call assertEqual(9., trajectory(2.,3.))@assertEqual(9., trajectory(2.,3.))
(automatically includes

file name and line number)

! no op

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 15 / 124

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual(9., s)call assertEqual(9., trajectory(2.,3.))@assertEqual(9., trajectory(2.,3.))
(automatically includes

file name and line number)

! no op

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 15 / 124

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual(9., s)call assertEqual(9., trajectory(2.,3.))@assertEqual(9., trajectory(2.,3.))
(automatically includes

file name and line number)

! no op

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 15 / 124

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual(9., s)call assertEqual(9., trajectory(2.,3.))@assertEqual(9., trajectory(2.,3.))
(automatically includes

file name and line number)

! no op

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 15 / 124

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual(9., s)

call assertEqual(9., trajectory(2.,3.))@assertEqual(9., trajectory(2.,3.))
(automatically includes

file name and line number)

! no op

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 15 / 124

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual(9., s)

call assertEqual(9., trajectory(2.,3.))@assertEqual(9., trajectory(2.,3.))
(automatically includes

file name and line number)

! no op

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 15 / 124

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual(9., s)

call assertEqual(9., trajectory(2.,3.))

@assertEqual(9., trajectory(2.,3.))
(automatically includes

file name and line number)

! no op

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 15 / 124

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual(9., s)call assertEqual(9., trajectory(2.,3.))

@assertEqual(9., trajectory(2.,3.))
(automatically includes

file name and line number)

! no op

Tom Clune (ASTG) pFUnit 3.0 - Introduction - Session I April 10, 2014 15 / 124

Outline

1 Introduction

2 Introduction to pFUnit
pFUnit overview
Build and Install
Simple examples
API: Exceptions and Assertions
Parser: Basic

3 References and Acknowledgements

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 16 / 124

Outline

1 Introduction

2 Introduction to pFUnit
pFUnit overview
Build and Install
Simple examples
API: Exceptions and Assertions
Parser: Basic

3 References and Acknowledgements

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 17 / 124

Brief history of pFUnit

2005 First prototype1

Re-implemented using TDD after reading a book

2006 Version 1.0 released as open source

2012 Began serious attempt at F2003/OO implementation2

2013 Version 2.0 released - heavy reliance of OO

New and improved parser (test “annotations”)
Numerous new assertions

2014 Version 3.0 released3

Introduced build with cmake
Custom test cases finally “easy”
Driver command line options (–debug, -o, –xml)

1Proof to colleague that Fortran (F90) could do this (I cheated)
2Great joy navigating immature compilers.
3Would have been 2.2, but bug in gfortran broke backwards compatibility

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 18 / 124

Noteworthy features of pFUnit 3.0

Implemented in standard Fortran1

Has strong support for multidimensional arrays

Enables testing of parallel applications - MPI & OpenMP2

Enables custom test fixtures

Enables parameterized tests

Extensible via OO features of Fortran

Greatly improves usability via elegant preprocessor annotations

Contains improved (and maintained!) examples

Covered by regression self-tests after each push

1F2003 with a dash of F2008
2Threadsafe

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 19 / 124

Noteworthy features of pFUnit 3.0

Implemented in standard Fortran1

Has strong support for multidimensional arrays

Enables testing of parallel applications - MPI & OpenMP2

Enables custom test fixtures

Enables parameterized tests

Extensible via OO features of Fortran

Greatly improves usability via elegant preprocessor annotations

Contains improved (and maintained!) examples

Covered by regression self-tests after each push

1F2003 with a dash of F2008
2Threadsafe

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 19 / 124

Noteworthy features of pFUnit 3.0

Implemented in standard Fortran1

Has strong support for multidimensional arrays

Enables testing of parallel applications - MPI & OpenMP2

Enables custom test fixtures

Enables parameterized tests

Extensible via OO features of Fortran

Greatly improves usability via elegant preprocessor annotations

Contains improved (and maintained!) examples

Covered by regression self-tests after each push

1F2003 with a dash of F2008
2Threadsafe

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 19 / 124

Noteworthy features of pFUnit 3.0

Implemented in standard Fortran1

Has strong support for multidimensional arrays

Enables testing of parallel applications - MPI & OpenMP2

Enables custom test fixtures

Enables parameterized tests

Extensible via OO features of Fortran

Greatly improves usability via elegant preprocessor annotations

Contains improved (and maintained!) examples

Covered by regression self-tests after each push

1F2003 with a dash of F2008
2Threadsafe

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 19 / 124

Noteworthy features of pFUnit 3.0

Implemented in standard Fortran1

Has strong support for multidimensional arrays

Enables testing of parallel applications - MPI & OpenMP2

Enables custom test fixtures

Enables parameterized tests

Extensible via OO features of Fortran

Greatly improves usability via elegant preprocessor annotations

Contains improved (and maintained!) examples

Covered by regression self-tests after each push

1F2003 with a dash of F2008
2Threadsafe

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 19 / 124

Noteworthy features of pFUnit 3.0

Implemented in standard Fortran1

Has strong support for multidimensional arrays

Enables testing of parallel applications - MPI & OpenMP2

Enables custom test fixtures

Enables parameterized tests

Extensible via OO features of Fortran

Greatly improves usability via elegant preprocessor annotations

Contains improved (and maintained!) examples

Covered by regression self-tests after each push

1F2003 with a dash of F2008
2Threadsafe

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 19 / 124

Noteworthy features of pFUnit 3.0

Implemented in standard Fortran1

Has strong support for multidimensional arrays

Enables testing of parallel applications - MPI & OpenMP2

Enables custom test fixtures

Enables parameterized tests

Extensible via OO features of Fortran

Greatly improves usability via elegant preprocessor annotations

Contains improved (and maintained!) examples

Covered by regression self-tests after each push

1F2003 with a dash of F2008
2Threadsafe

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 19 / 124

Noteworthy features of pFUnit 3.0

Implemented in standard Fortran1

Has strong support for multidimensional arrays

Enables testing of parallel applications - MPI & OpenMP2

Enables custom test fixtures

Enables parameterized tests

Extensible via OO features of Fortran

Greatly improves usability via elegant preprocessor annotations

Contains improved (and maintained!) examples

Covered by regression self-tests after each push

1F2003 with a dash of F2008
2Threadsafe

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 19 / 124

Noteworthy features of pFUnit 3.0

Implemented in standard Fortran1

Has strong support for multidimensional arrays

Enables testing of parallel applications - MPI & OpenMP2

Enables custom test fixtures

Enables parameterized tests

Extensible via OO features of Fortran

Greatly improves usability via elegant preprocessor annotations

Contains improved (and maintained!) examples

Covered by regression self-tests after each push

1F2003 with a dash of F2008
2Threadsafe

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 19 / 124

Noteworthy features of pFUnit 3.0

Implemented in standard Fortran1

Has strong support for multidimensional arrays

Enables testing of parallel applications - MPI & OpenMP2

Enables custom test fixtures

Enables parameterized tests

Extensible via OO features of Fortran

Greatly improves usability via elegant preprocessor annotations

Contains improved (and maintained!) examples

Covered by regression self-tests after each push

1F2003 with a dash of F2008
2Threadsafe

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 19 / 124

Useful resources

Website/documentation http://pfunit.sourceforge.net
I somewhat out of date

Mailing list: pfunit-support@lists.sourceforge.net

This tutorial https://modelingguru.nasa.gov/docs/DOC-2528

Contact me: Thomas.L.Clune@nasa.gov

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 20 / 124

http://pfunit.sourceforge.net
pfunit-support@lists.sourceforge.net
https://modelingguru.nasa.gov/docs/DOC-2528
Thomas.L.Clune@nasa.gov

pFUnit Architecture

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 21 / 124

Outline

1 Introduction

2 Introduction to pFUnit
pFUnit overview
Build and Install
Simple examples
API: Exceptions and Assertions
Parser: Basic

3 References and Acknowledgements

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 22 / 124

Supported compilers1,2

OS Vendor Version
Linux Intel ifort 14.0.2


Covered by regression tests

Linux Intel ifort 13.1.192
Linux GNU gfortran 4.9.03

Linux NAG nagfor 5.3.2(981)
OS X Intel ifort 14.0.2
OS X GNU gfortran 4.9.03

OS X NAG nagfor 5.3.2(979)
AIX IBM xlf ???

}
External contributions

Windows Intel ifort ???

1In many cases closely related compiler versions will also work.
2We are cautiously optimistic that PGI will soon be supported.
3Not yet released. 4.9.0 trunk does work, and 4.8.3 is expected to work.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 24 / 124

Misc requirements

python 2.6+

MPI 2.0+1

git 1.7.12

gmake 3.8.1

CMake 2.8.10

1Probably even 1.3
2Earlier verrsions may have issues with branching

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 25 / 124

Obtaining pFUnit

For this discussion we will refer to 3 distinct directories:

root - top directory of downloaded code

build - directory in which build instructions are issued

install - directory where various framework elements will be installed
for later use.

There are 2 ways to obtain the source code for pFUnit:

Via git (read-only):
git clone git://git.code.sf.net/p/pfunit/code pFUnit

Via tar:
http://sourceforge.net/projects/pfunit/files/latest/download

tar zxf ./pFUnit.tar.gz

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 27 / 124

git://git.code.sf.net/p/pfunit/code
http://sourceforge.net/projects/pfunit/files/latest/download

Exercise 0: Installation (download)

Step 0: Change directory to parent of <root_dir>
Step 1: Download source

git: % git clone git://git.code.sf.net/p/pfunit/code pFUnit

tar:
I http://sourceforge.net/projects/pfunit/files/latest/download

I mv <download_dir>/pFUnit.tar.gz <root_dir>/..
I cd <root_dir>/..
I tar -xzf ./pFUnit.tar.gz

Synchronize attendees ...

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 29 / 124

git://git.code.sf.net/p/pfunit/code
http://sourceforge.net/projects/pfunit/files/latest/download

Exercise 0: Installation (download)

Step 0: Change directory to parent of <root_dir>
Step 1: Download source

git: % git clone git://git.code.sf.net/p/pfunit/code pFUnit

tar:
I http://sourceforge.net/projects/pfunit/files/latest/download

I mv <download_dir>/pFUnit.tar.gz <root_dir>/..
I cd <root_dir>/..
I tar -xzf ./pFUnit.tar.gz

Synchronize attendees ...

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 29 / 124

git://git.code.sf.net/p/pfunit/code
http://sourceforge.net/projects/pfunit/files/latest/download

What’s in the distribution?

bash-3.2$ cd pFUnit

bash-3.2$ dir

total 104

16 CMakeLists.txt 24 LICENSE 0 source/

8 COPYRIGHT 32 README-INSTALL 0 tests/

8 Copyright.txt 0 bin/ 0 tools/

0 Examples/ 0 documentation/

16 GNUmakefile 0 include/

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 31 / 124

Exercise 0: Compile, test, install (serial)

Step 2: Compile serial

1 setenv PFUNIT <serial_install_dir>

2 Choose build option
I gmake

1 cd <root_dir>

2 make -j tests F90_VENDOR=Intel F90=ifort

3 make install INSTALL_DIR=$PFUNIT

I cmake
1 cd <root_dir>

2 mkdir build_serial

3 cd build_serial

4 cmake ..

5 make -j tests

6 make install

Synchronize attendees ...

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 33 / 124

Exercise 0: Compile, test, install (serial)

Step 2: Compile serial

1 setenv PFUNIT <serial_install_dir>

2 Choose build option
I gmake

1 cd <root_dir>

2 make -j tests F90_VENDOR=Intel F90=ifort

3 make install INSTALL_DIR=$PFUNIT

I cmake
1 cd <root_dir>

2 mkdir build_serial

3 cd build_serial

4 cmake ..

5 make -j tests

6 make install

Synchronize attendees ...

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 33 / 124

Exercise 0: Compile, test, install (MPI)

Step 3: Compile MPI

1 setenv PFUNIT <mpi_install_dir>

2 Choose build option
I gmake

1 cd <root_dir>

2 make -j tests MPI=YES F90_VENDOR=Intel F90=ifort

3 make install INSTALL_DIR=$PFUNIT

I cmake
1 cd <root_dir>

2 mkdir build_mpi

3 cd build_mpi

4 cmake .. -DMPI=YES

5 make -j tests

6 make install

Synchronize attendees ...

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 35 / 124

Exercise 0: Compile, test, install (MPI)

Step 3: Compile MPI

1 setenv PFUNIT <mpi_install_dir>

2 Choose build option
I gmake

1 cd <root_dir>

2 make -j tests MPI=YES F90_VENDOR=Intel F90=ifort

3 make install INSTALL_DIR=$PFUNIT

I cmake
1 cd <root_dir>

2 mkdir build_mpi

3 cd build_mpi

4 cmake .. -DMPI=YES

5 make -j tests

6 make install

Synchronize attendees ...

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 35 / 124

Cheat for jellystone users

Install pFUnit using the pFUnit installer executing the following script:
/picnic/u/home/cacruz/pFUnit.tutorial/install.pFUnit

The script will install pFUnit in a location of your choice.

Alternatively, users can access pre-installed installations in
/picnic/u/home/cacruz/pFUnit.tutorial

To use these set the PFUNIT environment variable as follows: csh (bash)

Base directory

s e t e n v PFUNIT BASE / p i c n i c /u/home/ c a c r u z / pFUnit . t u t o r i a l
(e x p o r t PFUNIT BASE=/ p i c n i c /u/home/ c a c r u z / pFUnit . t u t o r i a l)

For serial exercises:

s e t e n v PFUNIT $PFUNIT BASE/ pFUnit . s e r i a l
(e x p o r t PFUNIT=$PFUNIT BASE/ pFUnit . s e r i a l)

For MPI exercises:

s e t e n v PFUNIT $PFUNIT BASE/ pFUnit . mpi
(e x p o r t PFUNIT=$PFUNIT BASE/ pFUnit . mpi)

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 37 / 124

/picnic/u/home/cacruz/pFUnit.tutorial/install.pFUnit
/picnic/u/home/cacruz/pFUnit.tutorial

Outline

1 Introduction

2 Introduction to pFUnit
pFUnit overview
Build and Install
Simple examples
API: Exceptions and Assertions
Parser: Basic

3 References and Acknowledgements

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 38 / 124

Simple Example: testing factorial function

Here is a simple unit test that checks 2! = 2

@test

subroutine testFactorial2 ()

use pFUnit_mod

use Factorial_mod

@assertEqual (2, factorial (2))

end subroutine testFactorial2

./Exercises/SimpleTest/testFactorialA.pf

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 40 / 124

./Exercises/SimpleTest/testFactorialA.pf

Simple Example: testing factorial function

Here is a simple unit test that checks 2! = 2

@test

subroutine testFactorial2 ()

use pFUnit_mod

use Factorial_mod

@assertEqual (2, factorial (2))

end subroutine testFactorial2

./Exercises/SimpleTest/testFactorialA.pf

Note: This is not standard conforming Fortran.

File must be preprocessed prior to compilation.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 40 / 124

./Exercises/SimpleTest/testFactorialA.pf

Simple Example: testing factorial function

Here is a simple unit test that checks 2! = 2

@test

subroutine testFactorial2 ()

use pFUnit_mod

use Factorial_mod

@assertEqual (2, factorial (2))

end subroutine testFactorial2

./Exercises/SimpleTest/testFactorialA.pf

Procedure must “USE” pFUnit_mod.

Imports all pFUnit derived-types and procedures

E.g., the assertion routines

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 40 / 124

./Exercises/SimpleTest/testFactorialA.pf

Simple Example: testing factorial function

Here is a simple unit test that checks 2! = 2

@test

subroutine testFactorial2 ()

use pFUnit_mod

use Factorial_mod

@assertEqual (2, factorial (2))

end subroutine testFactorial2

./Exercises/SimpleTest/testFactorialA.pf

Test procedures are indicated by the @test annotation.

Must immediately precede subroutine declaration

Preprocessor generates code to “register” the test procedure

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 40 / 124

./Exercises/SimpleTest/testFactorialA.pf

Simple Example: testing factorial function

Here is a simple unit test that checks 2! = 2

@test

subroutine testFactorial2 ()

use pFUnit_mod

use Factorial_mod

@assertEqual (2, factorial (2))

end subroutine testFactorial2

./Exercises/SimpleTest/testFactorialA.pf

Expected results are indicated with the @assertEqual annotation.

First argument is expected value

Second argument is found value

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 40 / 124

./Exercises/SimpleTest/testFactorialA.pf

Simple Example: testing factorial function

Here is a simple unit test that checks 2! = 2

@test

subroutine testFactorial2 ()

use pFUnit_mod

use Factorial_mod

@assertEqual (2, factorial (2))

end subroutine testFactorial2

./Exercises/SimpleTest/testFactorialA.pf

@assertEqual expands to:
call assertEqual (2, factorial (2), &

& location=SourceLocation(&

& ’testFactorialA.pf ’, &

& 5))

if (anyExceptions ()) return

#line 6 "testFactorialA.pf"

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 40 / 124

./Exercises/SimpleTest/testFactorialA.pf

Simple Example: testing factorial function

Suites of tests must be registered with the pFUnit driver through a special
file called ’testSuites.inc’:

For the factorial example we have3

! Register your test suites here

ADD_TEST_SUITE(testFactorialA_suite)

!ADD_TEST_SUITE(testFactorialB_suite)

3From file: ./Exercises/SimpleTest/testSuites.inc

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 42 / 124

Simple Example: testing factorial function

Suites of tests must be registered with the pFUnit driver through a special
file called ’testSuites.inc’:

For the factorial example we have3

! Register your test suites here

ADD_TEST_SUITE(testFactorialA_suite)

!ADD_TEST_SUITE(testFactorialB_suite)

The parser generates one test suite per file/module.
Suite names are derived from the file containing the tests.

For modules, default suite name is <module_name>_suite

Otherise default suite name is <file_name>_suite

Can override with @suite=<name> annotation

3From file: ./Exercises/SimpleTest/testSuites.inc

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 42 / 124

Simple Example: testing factorial function

Suites of tests must be registered with the pFUnit driver through a special
file called ’testSuites.inc’:

For the factorial example we have3

! Register your test suites here

ADD_TEST_SUITE(testFactorialA_suite)

!ADD_TEST_SUITE(testFactorialB_suite)

‘testSuites.inc’ has the following structure

One entry per test suite

Each entry is of the form of a CPP macro
ADD_TEST_SUITE(<suite_name>)

Macro is case sensitive

3From file: ./Exercises/SimpleTest/testSuites.inc

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 42 / 124

Simple Example: testing factorial function

Suites of tests must be registered with the pFUnit driver through a special
file called ’testSuites.inc’:

For the factorial example we have3

! Register your test suites here

ADD_TEST_SUITE(testFactorialA_suite)

!ADD_TEST_SUITE(testFactorialB_suite)

In this example there is one active test suite:

testFactorialA_suite from file ‘testFactorialA.F90’

3From file: ./Exercises/SimpleTest/testSuites.inc

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 42 / 124

Simple Example: testing factorial function

Suites of tests must be registered with the pFUnit driver through a special
file called ’testSuites.inc’:

For the factorial example we have3

! Register your test suites here

ADD_TEST_SUITE(testFactorialA_suite)

!ADD_TEST_SUITE(testFactorialB_suite)

testFactorialB_suite from file ‘testFactorialB.F90’ is inactive:

Fortran comment character (‘!’) at the beginning of the line prevents
registration.

3From file: ./Exercises/SimpleTest/testSuites.inc

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 42 / 124

Simple Example: testing factorial function

Here is the simple makefile4 for our example:

.PHONY: t e s t s c l e a n
%.F90 : %. p f

$ (PFUNIT)/ b i n / p F U n i t P a r s e r . py $< $@ −I .
TESTS = $ (w i l d c a r d ∗ . p f)

%.o : %.F90
$ (FC) −c $<−I $ (PFUNIT)/mod

SRCS = $ (w i l d c a r d ∗ . F90)

OBJS = $ (SRCS : . F90=.o) $ (TESTS : . p f =.o)
DRIVER = $ (PFUNIT)/ i n c l u d e / d r i v e r . F90

t e s t s . x : $ (DRIVER) $ (OBJS) t e s t S u i t e s . i n c
$ (FC) −o $@ −I $ (PFUNIT)/mod $ˆ −L$ (PFUNIT)/ l i b − l p f u n i t −I .

t e s t s : t e s t s . x
. / t e s t s . x

c l e a n :
$ (RM) ∗ . o ∗ .mod ∗ . x ∗˜

The first rule above shows the invocation of the python script called
‘pFUnitParser.py’.

4From ./Exercises/SimpleTest/GNUmakefile
Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 44 / 124

Simple Example: testing factorial function (contd́)

Checklist for simple tests:

1 Each test is preceded by @test

2 Each test file has corresponding line in testSuites.inc:

ADD_TEST_SUITE(<suite >)

3 Makefile must know to preprocess test files:

%.pf : %.F90

$(PFUNIT)/bin/pFUnitParser.py $< $@

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 46 / 124

A bit more on annotations
The pFUnit parser has a very inflexible syntax:5

Each annotation must be on a single line6

No end-of-line comment characters

Comment at beginning of line deactivates that annotation

Also are some restrictions on style for intermingled Fortran:

Only supports free-format. (Fixed-format application code is fine.)

Test procedure declarations must be on one line:

@test

subroutine testA ()
Correct

@test

subroutine &

& testA()

Illegal - must be on one
line

5I am not in the business of automatically parsing Fortran.
6I expect this to be relaxed in the future.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 48 / 124

A bit more on annotations
The pFUnit parser has a very inflexible syntax:5

Each annotation must be on a single line6

No end-of-line comment characters

Comment at beginning of line deactivates that annotation

Also are some restrictions on style for intermingled Fortran:

Only supports free-format. (Fixed-format application code is fine.)

Test procedure declarations must be on one line:

@test

subroutine testA ()
Correct

@test

subroutine &

& testA()

Illegal - must be on one
line

5I am not in the business of automatically parsing Fortran.
6I expect this to be relaxed in the future.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 48 / 124

A bit more on annotations
The pFUnit parser has a very inflexible syntax:5

Each annotation must be on a single line6

No end-of-line comment characters

Comment at beginning of line deactivates that annotation

Also are some restrictions on style for intermingled Fortran:

Only supports free-format. (Fixed-format application code is fine.)

Test procedure declarations must be on one line:

@test

subroutine testA ()
Correct

@test

subroutine &

& testA()

Illegal - must be on one
line

5I am not in the business of automatically parsing Fortran.
6I expect this to be relaxed in the future.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 48 / 124

pFUnit Driver

The driver is a short program that

bundles the various test suites into a single suite

runs the tests

produces a short summary

Users can write their own if desired.7

Driver uses F2003 feauters to provide the following command line support

-h, --help display options

-v, --verbose -d --debug more reporting

-o <file> rerout output

-robust not reliable at this time

-skip used internally (with -robust)

7Requires some knowledge of F2003, and advanced aspects of pFUnit.
Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 50 / 124

Exercise 1a: Build the “SimpleTest” example in the
distribution

1 Change directory to ./Exercises/SimpleTest

2 set $PFUNIT to the serial installation

3 make tests

4 Verify that 1 test ran successfully.

If successful you should see something like:

.

Time: 0.002 seconds

OK

(1 test)

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 52 / 124

./Exercises/SimpleTest

Exercise 1b: Activate other test file

1 Edit ./testSuites.inc and uncomment the 2nd suite

2 make tests

You should see something like:

..

Time: 0.006 seconds

OK

(2 tests)

Look at the test file.
Question: Why are there 2 tests rather than 3?
Notice the periods: there is one for each test run.1

1Useful for large collections to show that the tests are proceeding.
Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 54 / 124

./testSuites.inc

Exercise 1c: Activate 3rd test

1 Edit the file ./Exercises/SimpleTest/testFactorialB.pf: and
insert the @test annotation before the 2nd test procedure

2 make tests

You should see something like:

...

Time: 0.006 seconds

OK

(3 tests)

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 56 / 124

./Exercises/SimpleTest/testFactorialB.pf

Exercise 1d: Create a 4th test

1 Create a new test procedure that verifies 0! = 1

2 make tests (uh oh!)

. . . . F
Time : 0 . 0 0 2 s e c o n d s

F a i l u r e i n : t e s t F a c t o r i a l D
L o c a t i o n : [t e s t F a c t o r i a l . p f : 2 6]

e x p e c t e d : <1> but found : <0>

FAILURES ! ! !
T e s t s run : 4 , F a i l u r e s : 1 , E r r o r s : 0
∗∗∗ Encountered 1 o r more f a i l u r e s / e r r o r s d u r i n g t e s t i n g . ∗∗∗
make : ∗∗∗ [t e s t s] E r r o r 128

3 Fix the implementation

4 make tests (whew!)

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 58 / 124

Exercise 1e: Demonstrate tests as a harness

1 Edit factorial.F90

2 Insert a bug (e.g., change ’*’ to ’+’)

3 % make tests

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 60 / 124

Testing MPI-based procedures

Introduces new ways to fail

Fail on any/all processes
Fail when varying number of processes
Race, deadlock, ...

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 61 / 124

Testing MPI-based procedures

Introduces new ways to fail

Fail on any/all processes

Fail when varying number of processes
Race, deadlock, ...

www.glogster.com

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 61 / 124

www.glogster.com

Testing MPI-based procedures

Introduces new ways to fail

Fail on any/all processes
Fail when varying number of processes

Race, deadlock, ...

www.thebigquestions.com

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 61 / 124

www.thebigquestions.com

Testing MPI-based procedures

Introduces new ways to fail

Fail on any/all processes
Fail when varying number of processes
Race, deadlock, ...

csunplugged.org

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 61 / 124

csunplugged.org

Basic MPI example: matrix transpose

8 @test (npes = [1])
9 ! Transpose o f 1x1 i s j u s t i d e n t i t y .

10 s u b r o u t i n e t e s t T r a n s p o s e t r i v i a l (t h i s)
11 c l a s s (MpiTestMethod) , i n t e n t (i n o u t) : : t h i s
12 r e a l : : a (1 , 1) , a t (1 , 1)
13 i n t e g e r : : comm
14
15 a = 1 ! p r e c o n d i t i o n s
16
17 comm = t h i s%getMpiCommunicator ()
18 c a l l t r a n s p o s e (comm, a , a t)
19
20 @mpiAssertEqual (1 , a t)
21 end s u b r o u t i n e t e s t T r a n s p o s e t r i v i a l

./Exercises/SimpleMpiTest/TestTranspose.pf

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 63 / 124

./Exercises/SimpleMpiTest/TestTranspose.pf

Basic MPI example: matrix transpose

8 @test (npes = [1])
9 ! Transpose o f 1x1 i s j u s t i d e n t i t y .

10 s u b r o u t i n e t e s t T r a n s p o s e t r i v i a l (t h i s)
11 c l a s s (MpiTestMethod) , i n t e n t (i n o u t) : : t h i s
12 r e a l : : a (1 , 1) , a t (1 , 1)
13 i n t e g e r : : comm
14
15 a = 1 ! p r e c o n d i t i o n s
16
17 comm = t h i s%getMpiCommunicator ()
18 c a l l t r a n s p o s e (comm, a , a t)
19
20 @mpiAssertEqual (1 , a t)
21 end s u b r o u t i n e t e s t T r a n s p o s e t r i v i a l

./Exercises/SimpleMpiTest/TestTranspose.pf

@test accepts an optional argument npes=[<list>]

Indicates to framework that test procedure uses MPI.

Test procedure will execute once for each item in < list>

New subcommunicator of indicated size created for each execution

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 63 / 124

./Exercises/SimpleMpiTest/TestTranspose.pf

Basic MPI example: matrix transpose

8 @test (npes = [1])
9 ! Transpose o f 1x1 i s j u s t i d e n t i t y .

10 s u b r o u t i n e t e s t T r a n s p o s e t r i v i a l (t h i s)
11 c l a s s (MpiTestMethod) , i n t e n t (i n o u t) : : t h i s
12 r e a l : : a (1 , 1) , a t (1 , 1)
13 i n t e g e r : : comm
14
15 a = 1 ! p r e c o n d i t i o n s
16
17 comm = t h i s%getMpiCommunicator ()
18 c a l l t r a n s p o s e (comm, a , a t)
19
20 @mpiAssertEqual (1 , a t)
21 end s u b r o u t i n e t e s t T r a n s p o s e t r i v i a l

./Exercises/SimpleMpiTest/TestTranspose.pf

MPI tests have a single, mandatory argument

Used by framework to pass MPI context information

TYPE and INTENT must be exactly as above

Keyword CLASS is an F2003 OO extension

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 63 / 124

./Exercises/SimpleMpiTest/TestTranspose.pf

Basic MPI example: matrix transpose

8 @test (npes = [1])
9 ! Transpose o f 1x1 i s j u s t i d e n t i t y .

10 s u b r o u t i n e t e s t T r a n s p o s e t r i v i a l (t h i s)
11 c l a s s (MpiTestMethod) , i n t e n t (i n o u t) : : t h i s
12 r e a l : : a (1 , 1) , a t (1 , 1)
13 i n t e g e r : : comm
14
15 a = 1 ! p r e c o n d i t i o n s
16
17 comm = t h i s%getMpiCommunicator ()
18 c a l l t r a n s p o s e (comm, a , a t)
19
20 @mpiAssertEqual (1 , a t)
21 end s u b r o u t i n e t e s t T r a n s p o s e t r i v i a l

./Exercises/SimpleMpiTest/TestTranspose.pf

Mandatory argument is an object with useful methods
comm = this%getMpiCommunicator ()

npes = this%getNumProcesses ()

rank = this%getProcessRank ()

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 63 / 124

./Exercises/SimpleMpiTest/TestTranspose.pf

Basic MPI example: matrix transpose

8 @test (npes = [1])
9 ! Transpose o f 1x1 i s j u s t i d e n t i t y .

10 s u b r o u t i n e t e s t T r a n s p o s e t r i v i a l (t h i s)
11 c l a s s (MpiTestMethod) , i n t e n t (i n o u t) : : t h i s
12 r e a l : : a (1 , 1) , a t (1 , 1)
13 i n t e g e r : : comm
14
15 a = 1 ! p r e c o n d i t i o n s
16
17 comm = t h i s%getMpiCommunicator ()
18 c a l l t r a n s p o s e (comm, a , a t)
19
20 @mpiAssertEqual (1 , a t)
21 end s u b r o u t i n e t e s t T r a n s p o s e t r i v i a l

./Exercises/SimpleMpiTest/TestTranspose.pf

@mpiAssertEqual is a variant of @assertEqual

Enforces synchronization among processes

Both forms will attach information about rank and npes in MPI test

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 63 / 124

./Exercises/SimpleMpiTest/TestTranspose.pf

Basic MPI example: matrix transpose

8 @test (npes = [1])
9 ! Transpose o f 1x1 i s j u s t i d e n t i t y .

10 s u b r o u t i n e t e s t T r a n s p o s e t r i v i a l (t h i s)
11 c l a s s (MpiTestMethod) , i n t e n t (i n o u t) : : t h i s
12 r e a l : : a (1 , 1) , a t (1 , 1)
13 i n t e g e r : : comm
14
15 a = 1 ! p r e c o n d i t i o n s
16
17 comm = t h i s%getMpiCommunicator ()
18 c a l l t r a n s p o s e (comm, a , a t)
19
20 @mpiAssertEqual (1 , a t)
21 end s u b r o u t i n e t e s t T r a n s p o s e t r i v i a l

./Exercises/SimpleMpiTest/TestTranspose.pf

Within an MPI test, failing assertions (either type) will

Indicate number of processes used in test

Rank(s) of process(es) that detected failure

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 63 / 124

./Exercises/SimpleMpiTest/TestTranspose.pf

Using assertions with MPI tests

Because the various assert annotations issue RETURN statements, care
must be taken to avoid unintendend hangs on subsequent statements:

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 65 / 124

Using assertions with MPI tests

Because the various assert annotations issue RETURN statements, care
must be taken to avoid unintendend hangs on subsequent statements:
The following can hang under some circumstances:

@assertEqual (1., x)

@assertEqual (0., y)

Some processes may not reach second assert statement.

Use @mpiAssertEqual instead

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 65 / 124

Using assertions with MPI tests

Because the various assert annotations issue RETURN statements, care
must be taken to avoid unintendend hangs on subsequent statements:
The following can hang under some circumstances:

@assertEqual (1., x)

call MPI_Barrier(comm , ier)

Some processes may not reach barrier statement.

Use @mpiAssertEqual instead

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 65 / 124

Using assertions with MPI tests

Because the various assert annotations issue RETURN statements, care
must be taken to avoid unintendend hangs on subsequent statements:
The following can hang under some circumstances:

if (x > 0) then

@mpiAssertEqual (3, i)

endif

some processes may not reach implict barrier in assert.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 65 / 124

Using assertions with MPI tests

Because the various assert annotations issue RETURN statements, care
must be taken to avoid unintendend hangs on subsequent statements:

Best practice:

Do not place assertions within conditional logic

Use just 1 assertion per test procedure

Use @mpiAssertTrue

Use a local variable to hold expected value on each process, e.g.,

if (rank == 0) then

expectedSum = 1.5

else

expectedSum = 0.0

end if

@mpiAssertEqual(expectedSum , foundSum)

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 65 / 124

Exercise 2: Extend transpose tests

In this exercise, we will test an existing implementation of an MPI-based
transpose procedure that accepts 3 arguments:

comm - (input) MPI communicator2

a - (input) array with columns distributed across processes

at - (output) transpose of a with columns distributed

For example, if we have

A =

(
1 3
2 4

)
AT =

(
1 2
3 4

)
Then for 2 processes, we have

a(:,1) = [1,2] on p0

a(:,1) = [3,4] on p1

at(:,1) = [1,3] on p0

at(:,1) = [3,4] on p1

2SUT must not use MPI_COMM_WORLD
Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 67 / 124

Exercise 2: Extend transpose tests

In this exercise, we will test an existing implementation of an MPI-based
transpose procedure that accepts 3 arguments:

comm - (input) MPI communicator2

a - (input) array with columns distributed across processes

at - (output) transpose of a with columns distributed

For example, if we have

A =

(
1 3
2 4

)
AT =

(
1 2
3 4

)

Then for 2 processes, we have

a(:,1) = [1,2] on p0

a(:,1) = [3,4] on p1

at(:,1) = [1,3] on p0

at(:,1) = [3,4] on p1

2SUT must not use MPI_COMM_WORLD
Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 67 / 124

Exercise 2: Extend transpose tests

In this exercise, we will test an existing implementation of an MPI-based
transpose procedure that accepts 3 arguments:

comm - (input) MPI communicator2

a - (input) array with columns distributed across processes

at - (output) transpose of a with columns distributed

For example, if we have

A =

(
1 3
2 4

)
AT =

(
1 2
3 4

)
Then for 2 processes, we have

a(:,1) = [1,2] on p0

a(:,1) = [3,4] on p1

at(:,1) = [1,3] on p0

at(:,1) = [3,4] on p1
2SUT must not use MPI_COMM_WORLD

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 67 / 124

Exercise 2a: Build transpose tests

1 Set $PFUNIT to the MPI build installation
2 Build and run tests

1 Change directory to ./Exercises/SimpleMpiTest
2 make tests
3 Verify that 2 tests ran successfully.
4 Q: How many processes does the 1st test use?
5 Q: How many processes does the 2nd test use?

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 69 / 124

./Exercises/SimpleMpiTest

Exercise 2b: Build broken test

1 Uncomment the line for BrokenTest_mod_suite in ‘testSuites.inc’

2 make tests

3 Deactivate BrokenTest_mod_suite

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 71 / 124

Exercise 2b: Build broken test

1 Uncomment the line for BrokenTest_mod_suite in ‘testSuites.inc’

2 make tests

You should now see something like
. . . F
Time : 0 . 0 0 9 s e c o n d s

F a i l u r e i n : t e s t B r o k e n 2 x 2 [npes =2]
L o c a t i o n : [BrokenTest . p f : 3 3]

e x p e c t e d +5.000000 but found : +1.000000; d i f f e r e n c e : |+4.000000 | > t o l e r a n c e
: + 0 . 0 0 0 0 0 0 ; f i r s t d i f f e r e n c e a t e l e m e n t [1 , 1] . (PE=0)

F a i l u r e i n : t e s t B r o k e n 2 x 2 [npes =2]
L o c a t i o n : [BrokenTest . p f : 3 3]

e x p e c t e d +5.000000 but found : +2.000000; d i f f e r e n c e : |+3.000000 | > t o l e r a n c e
: + 0 . 0 0 0 0 0 0 ; f i r s t d i f f e r e n c e a t e l e m e n t [1 , 1] . (PE=1)

FAILURES ! ! !
T e s t s run : 3 , F a i l u r e s : 1 , E r r o r s : 0
−−
mpirun n o t i c e d t h a t t h e j o b aborted , but has no i n f o as to t h e p r o c e s s
t h a t caused t h a t s i t u a t i o n .
−−
∗∗∗ Encountered 1 o r more f a i l u r e s / e r r o r s d u r i n g t e s t i n g . ∗∗∗
make : ∗∗∗ [t e s t s] E r r o r 128

3 Deactivate BrokenTest_mod_suite

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 71 / 124

Exercise 2b: Build broken test

1 Uncomment the line for BrokenTest_mod_suite in ‘testSuites.inc’

2 make tests

3 Deactivate BrokenTest_mod_suite

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 71 / 124

A better test?

The existing tests are unsatisfactory in that they are hardwired to specific
numbers of processes. Here we attempt to build a test that should work
on arbitrary counts.

We facilitate this by using a generator function that can be used to
generate synthetic array elements that are independent of parallelism:

aij = aTji = np ∗ i + j

8 r e a l f u n c t i o n a r r a y E n t r y (i , j , np) r e s u l t (a)
9 i n t e g e r , i n t e n t (i n) : : i

10 i n t e g e r , i n t e n t (i n) : : j
11 i n t e g e r , i n t e n t (i n) : : np
12
13 a = np∗ j + i
14
15 end f u n c t i o n a r r a y E n t r y

./Examples/SimpleMpiTest/TestTranspose2.pf

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 73 / 124

./Examples/SimpleMpiTest/TestTranspose2.pf

A better test?

The existing tests are unsatisfactory in that they are hardwired to specific
numbers of processes. Here we attempt to build a test that should work
on arbitrary counts.

We facilitate this by using a generator function that can be used to
generate synthetic array elements that are independent of parallelism:

aij = aTji = np ∗ i + j

8 r e a l f u n c t i o n a r r a y E n t r y (i , j , np) r e s u l t (a)
9 i n t e g e r , i n t e n t (i n) : : i

10 i n t e g e r , i n t e n t (i n) : : j
11 i n t e g e r , i n t e n t (i n) : : np
12
13 a = np∗ j + i
14
15 end f u n c t i o n a r r a y E n t r y

./Examples/SimpleMpiTest/TestTranspose2.pf

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 73 / 124

./Examples/SimpleMpiTest/TestTranspose2.pf

A better test?

The existing tests are unsatisfactory in that they are hardwired to specific
numbers of processes. Here we attempt to build a test that should work
on arbitrary counts.

We facilitate this by using a generator function that can be used to
generate synthetic array elements that are independent of parallelism:

aij = aTji = np ∗ i + j

8 r e a l f u n c t i o n a r r a y E n t r y (i , j , np) r e s u l t (a)
9 i n t e g e r , i n t e n t (i n) : : i

10 i n t e g e r , i n t e n t (i n) : : j
11 i n t e g e r , i n t e n t (i n) : : np
12
13 a = np∗ j + i
14
15 end f u n c t i o n a r r a y E n t r y

./Examples/SimpleMpiTest/TestTranspose2.pf

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 73 / 124

./Examples/SimpleMpiTest/TestTranspose2.pf

Using the generator

36 p = t h i s%g e t P r o c e s s R a n k ()
37 do i = 1 , npes
38 j = p + 1
39 a (i , 1) = a r r a y E n t r y (i , j , npes)
40 end do
41
42 do i = 1 , npes
43 j = p + 1
44 a t e x p e c t e d (i , 1) = a r r a y E n t r y (j , i , npes)
45 end do
46
47 c a l l t r a n s p o s e (comm, a , a t f o u n d)
48
49 @mpiAssertEqual (a t e x p e c t e d , a t f o u n d)

./Examples/SimpleMpiTest/TestTranspose2.pf

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 75 / 124

./Examples/SimpleMpiTest/TestTranspose2.pf

Exercise 2c: Activate generalized test

1 Uncomment 3rd suite in ‘testSuites.inc’
2 make tests

I You should now see 4 tests run
I New test procedure was run twice: on 1 and 2 pes respectively.

3 Edit ‘TestTranspose2.pf’ to have the test run on 1,2,3, and 4
processes.

4 make tests
I You should now see 6 tests run

5 Q: What happens when you include a case with 5 processes?

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 77 / 124

Fixtures

www.remodelista.com

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 78 / 124

www.remodelista.com

Test Fixtures
A test fixture is any mechanism that allows a consistent initialization for
test preconditions.

Group of tests have same initial conditions
Complex sequence of steps to create preconditions
Ensures release of system resources (memory, files, ...)

Testing frameworks generally provide mechanisms to encapsulate the logic
for test preconditions and cleanup. Usually this is in the form of
procedures named setUp() and tearDown().

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 79 / 124

Simple fixture (unencapsulated)

Can be expedient to use a global variable or a temporary file as a
quick-and-dirty fixture:
module SimpleFixture_mod

use pFunit

use Reader_mod

contains

@before

subroutine init()

open(10,file=’tmp.dat ’,status=’new ’)

write (10) 1

write (10) 2

close (10)

end subroutine init

@after

subroutine done()

open(10,file=’tmp.dat ’,status=’unknown ’)

close(10, status=’delete ’)

end subroutine done

...

end module SimpleFixture_mod
Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 81 / 124

Simple fixture (contd́)

@before indicates procedure to run before each test in file
I Convention is to call procedure setUp()

@after indicates procedure to run after each test in file
I Convention is to call procedure tearDown()

Because no arguments are passed to procedures, fixture data must be
in the form of global variables (module, common) or the file system
(file)

I Dangerously close to violating rule: “No Side Effects!”

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 83 / 124

barksandblooms1.blogspot.com

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 84 / 124

barksandblooms1.blogspot.com

Trapping illegal input

Consider the following code snippet:

subroutine checkInputs(n)

if (n <= 0) then

call stopModel(’n must be positive ’)

endif

end subroutine checkInput

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 86 / 124

Trapping (cont’d)

We want to test that the application traps bad values

So we start writing a test ...

@test

subroutine testNegativeN ()

call checkInputs (-1)

? what do we check ?

end subroutine

We immediately encounter some difficulties

The test terminates execution

We don’t have anything to check inside the test anyway

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 88 / 124

Trapping (cont’d)

We want to test that the application traps bad values
So we start writing a test ...

@test

subroutine testNegativeN ()

call checkInputs (-1)

? what do we check ?

end subroutine

We immediately encounter some difficulties

The test terminates execution

We don’t have anything to check inside the test anyway

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 88 / 124

Trapping (cont’d)

We want to test that the application traps bad values
So we start writing a test ...

@test

subroutine testNegativeN ()

call checkInputs (-1)

? what do we check ?

end subroutine

We immediately encounter some difficulties

The test terminates execution

We don’t have anything to check inside the test anyway

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 88 / 124

Trapping (cont’d)

What if istead the application looked like this:

subroutine checkInputs(n)

if (n <= 0) then

! send signal (" exception ") to pFUnit

call throw(’n must be positive ’)

return

endif

end subroutine checkInput

And the test:

@test

subroutine testNegativeN ()

call checkInputs (-1)

@assertExceptionRaised(’n must be positive ’)

end subroutine

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 90 / 124

Trapping (cont’d)

Of course we now have new problems:

We have introduced a dependency on pFUnit in the application

When not testing the code does not stop.

My usual kludge to deal with this is:

#i f d e f USE PFUNIT
s u b r o u t i n e stopModel (message)

use pFUnit mod , o n l y : throw
c h a r a c t e r (l e n =∗) , i n t e n t (i n) : : message
c a l l throw (message)

end s u b r o u t i n e stopModel
#e l s e
s u b r o u t i n e stopModel (message)

use pFUnit mod , o n l y : throw
c h a r a c t e r (l e n =∗) , i n t e n t (i n) : : message
p r i n t ∗ , message
s t o p

end s u b r o u t i n e stopModel
#e n d i f

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 92 / 124

Trapping (cont’d)

Summary

Use throw to signal undesired state

Use @assertExceptionRaised to detect signal

Use preprocessor to limit dependency on framework
I Must not stop execution in testing configuration.
I Should not depend on pFUnit in production configuration

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 93 / 124

Outline

1 Introduction

2 Introduction to pFUnit
pFUnit overview
Build and Install
Simple examples
API: Exceptions and Assertions
Parser: Basic

3 References and Acknowledgements

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 94 / 124

Exception class

Role: Used to notify/detect “undesired” states during execution. Limited
emulation of exceptions provided by other high-level languages (C++,
Java, Python, etc).
Implementation:

Manages a global, private stack of Exception objects.

Each Exception object has a message, and a location (file+line).

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 96 / 124

Exception API

subroutine throw(message[, location])

logical function catch([preserve])

logical function catch(message , [preserve])

type (Exception) function catchNext ([preserve])

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 98 / 124

Assert modules

Role: Used to express intended/expected relationships among variables.
Implementation:

Heavily overloaded suite of procedures with consistent style for
interface.

When the intended relationship does not hold, the layer pushes a
self-explanatory Exception onto the global exception stack.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 99 / 124

Logical Assertions

call assertTrue(condition)

call assertFalse(condition)

call assertAny(conditions)

call assertAll(conditions)

call assertNone(conditions)

call assertNotAll(conditions)

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 101 / 124

String Assertions

call assertEqual(expected , found)

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 103 / 124

Integer Assertions

call assertEqual(expected , found)

Overloaded for up to rank 2 (Need more? send a support request!)

Only supports default KIND

The following are only supported for scalars:

call assertLessThan(a, b) ! a < b

call assertLessThanOrEqual(a, b) ! a <= b

call assertGreaterThan(a, b) ! a > b

call assertGreaterThanOrEqual(a, b) ! a >= b

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 105 / 124

API - AssertEqual (Real)

Compare two values and throw exception if different

|a− b| > δ

call assertEqual(expected , found[, tolerance])

Uses absolute error (as opposed to relative error)

Overloaded for multiple KINDs (32 and 64 bit)

Overlaoded for multiple ranks (up through 5D)

Optional tolerance – default is exact equality

Uses L∞ norm
To reduce exponential number of overloads:

I KIND(expected) <= KIND(found)
I KIND(tolerance) == KIND(found)
I RANK(expected) == RANK(found) or scalar

Example message:

e x p e c t e d : +1.000000 but found : +3.000000;
d i f f e r e n c e : |+ 2 . 0 0 0 0 0 0 | > t o l e r a n c e : + 0 . 0 0 0 0 0 0 .

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 107 / 124

API - Assert variants (Real)

call assertLessThan(expected , found)

call assertGreaterThan(expected , found)

call assertLessThanOrEqual(expected , found)

call assertGreaterThanOrEqual(expected , found)

If relative tolerance is desired:

If
|a− b|
|a|

> δ then fail

c a l l a s s e r t R e l a t i v e l y E q u a l (expected , found [, t o l e r a n c e])

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 109 / 124

API - AssertEqual (Complex)

Compare two values and throw exception if different

|a− b| > δ

call assertEqual(expected , found[, tolerance])

Overloaded for multiple KINDs (32 and 64 bit)

Overlaoded for multiple ranks (up through 5D)

Optional tolerance – default is exact equality

To reduce exponential number of overloads:
I KIND(expected) <= KIND(found)
I KIND(tolerance) == KIND(found)
I RANK(expected) == RANK(found) or scalar

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 111 / 124

Miscellaneous other Assert procedures

c a l l assertIsNaN (x) ! s i n g l e / d o u b l e
c a l l a s s e r t I s F i n i t e (x) ! s i n g l e / d o u b l e
c a l l assertExcept ionRaised ()
c a l l assertExcept ionRaised (message)
c a l l assertSameShape (expectedShape , foundShape)

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 113 / 124

Outline

1 Introduction

2 Introduction to pFUnit
pFUnit overview
Build and Install
Simple examples
API: Exceptions and Assertions
Parser: Basic

3 References and Acknowledgements

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 114 / 124

Annotations: Miscellaenous

@suite

Overrides default name for generated function which constructs test
suite for the input file. Default is <base>_suite for file with external
test procedures, and <module_name>_suite for files that contain a
module.

@before

Indicates next line begins a setUp() procedure for subsequent test
procedures.

@after

Indicates next line begins a tearDown() procedure for subsequent test
procedures.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 116 / 124

Annotations: @assert*

@assert *(...)

1 Calls corresponding Fortran assert procedure

2 Inserts argument for file & line number

3 Inserts conditional return if exception is thrown

For example, if line 100 of file ’myTests.pf’ is:

@assertEqual(x, y, tolerance)

Expands to

!@assertEqual(x, y, tolerance)

call assertEqual(x, y, tolerance , &

& SourceLocation(’myTests.pf’, 100))

if (anyExceptions ()) return

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 118 / 124

Annotations @test

@test

@test(<options >)

Indicates that next line begins a new test procedure

Appends test procedure in the file’s TestSuite

Accepts the following options:
I ifdef=<token> Enables conditional compilation of test
I npes=[<list-of-integers>] Specifies that test is to run in a

parallel context on the given numbers of processes.
I esParameters={expr} Run this test once for each value in expr. Expr

can be an explicit array of TestParameter’s or a function that returns
sech an array.

I cases=[<list-of-integers>] Alternative mechanism for specifying
test parameters where a single integer is passed to the test constructor.

Tom Clune (ASTG) pFUnit 3.0 - Introduction to pFUnit - Session I April 10, 2014 120 / 124

Outline

1 Introduction

2 Introduction to pFUnit

3 References and Acknowledgements

Tom Clune (ASTG) pFUnit 3.0 - References and Acknowledgements - Session I April 10, 2014 121 / 124

References

pFUnit: http://sourceforge.net/projects/pfunit/

Tutorial materials
I https://modelingguru.nasa.gov/docs/DOC-1982
I https://modelingguru.nasa.gov/docs/DOC-1983
I https://modelingguru.nasa.gov/docs/DOC-1984

TDD Blog
https://modelingguru.nasa.gov/blogs/modelingwithtdd

Test-Driven Development: By Example - Kent Beck

Mller and Padberg,”About the Return on Investment of Test-Driven
Development,” http://www.ipd.uka.de/mitarbeiter/muellerm/

publications/edser03.pdf

Refactoring: Improving the Design of Existing Code - Martin Fowler

JUnit http://junit.sourceforge.net/

Tom Clune (ASTG) pFUnit 3.0 - References and Acknowledgements - Session I April 10, 2014 122 / 124

http://sourceforge.net/projects/pfunit/
https://modelingguru.nasa.gov/docs/DOC-1982
https://modelingguru.nasa.gov/docs/DOC-1983
https://modelingguru.nasa.gov/docs/DOC-1984
https://modelingguru.nasa.gov/blogs/modelingwithtdd
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf
http://junit.sourceforge.net/

Acknowledgements

This work has been supported by NASA’s High End Computing
(HEC) program and Modeling, Analysis, and Prediction Program.

Many thanks to team members Carlos Cruz and Mike Rilee for
helping with implementation, regression testing and documentation.

Special thanks to members of the user community that have made
contributions.

I Sean Patrick Santos
I Matthew Hambley
I Evan Lezar

Tom Clune (ASTG) pFUnit 3.0 - References and Acknowledgements - Session I April 10, 2014 123 / 124

	Introduction
	Overview
	Quick review of testing

	Introduction to pFUnit
	pFUnit overview
	Build and Install
	Simple examples
	API: Exceptions and Assertions
	Parser: Basic

	References and Acknowledgements

